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Diffusion in a two-dimensional channel with curved midline and varying width:
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Diffusion in a narrow two-dimensional channel with a midline that need not be straight and a width that may
vary is reduced to an effective one-dimensional equation of motion. This equation takes the form of the
Fick-Jacobs equation with a spatially varying effective diffusivity. The effective diffusivity includes a contri-
bution that comes from the slope of the midline as well as the usual term stemming from variations in the
channel width along the length of the channel. Our derivation of our equation of motion is completely rigorous
and is based on an asymptotic expansion in a small dimensionless parameter that characterizes the channel
width. For a channel that has a straight midline or wall, our equation of motion reduces to Zwanzig’s equation
[R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)]. Our derivation therefore provides a rigorous proof of the
validity of the latter equation. Finally, the equation of motion is solved analytically for channels with curved

midline and constant width.
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I. INTRODUCTION

The problem of diffusion in a narrow channel arises in
many contexts and is important in biology, chemistry, and
nanotechnology. Channels of current interest include pores in
zeolites [1], carbon nanotubes [2], serpentine channels in mi-
crofluidic devices [3], artificially produced pores in thin solid
films [4], and channels in biological membranes [5].

The subject of the present paper is diffusion in a two-
dimensional (2D) channel that lies in the X—Z plane and has
hard walls. The diffusing particles are confined to the region
with H_(X) <Z<H,(X) and arbitrary X, where H, and H_
are smooth single-valued functions of X but are otherwise
arbitrary. We will develop an approximate one-dimensional
(ID) equation of motion that is a good approximation for
narrow channels and for sufficiently long times 7.

This problem has already been studied in depth for chan-
nels with H_(X)=0 for all X, and, equivalently, for channels
that have H_(X)=—H,(X) and so are symmetric under reflec-
tion about the X axis [6—17]. For a narrow symmetric chan-
nel, the midline is straight and the lowest-order approxima-
tion is the Fick-Jacobs (FJ) equation [6]. The number density
of particles @ is taken to have reached equilibrium locally in
this approximation, so that ® is independent of Z. In his
classic paper on the topic, Zwanzig developed an effective
1D equation of motion that is an improvement on the FJ
equation because it includes the lowest-order deviation from
local equilibrium [7]. Unfortunately, Zwanzig made a num-
ber of unjustified assumptions in deriving his equation and so
was compelled to test its validity by comparing its predic-
tions to two exactly solvable special cases. A more convinc-
ing derivation of the Zwanzig equation was given by Kalinay
and Percus (KP), who also developed an equation that in-
cludes the lowest-order correction to the Zwanzig equation
[9]. Although their work was an important step toward plac-
ing the Zwanzig equation on a firm theoretical foundation,
KP assumed that knowledge of the density averaged over the
channel width is all that is needed to determine the density
throughout the channel. It is not at all obvious that this as-
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sumption is correct and so the validity of the Zwanzig equa-
tion could still be called into question, despite its widespread
usage. Indeed, tests of the Zwanzig equation for 2D channels
and its counterpart for three-dimensional tubes continue to
appear in the literature [9,14,15].

The channels that occur in nature as a rule have a curved
midline, and frequently artificially produced channels do as
well. With this as our motivation, in this paper we will gen-
eralize the FJ and Zwanzig equations to narrow asymmetric
2D channels. Our derivation of these equations, which is
based on an asymptotic expansion in a small dimensionless
parameter e that characterizes the channel width, is com-
pletely rigorous and the KP assumption is not needed. The FJ
equation is valid to zeroth order in € and is found to take on
the same form for both symmetric and asymmetric channels.
The generalized Zwanzig equation is valid to first order in e.
The effective diffusivity that appears in this equation in-
cludes a contribution that comes from variations in the chan-
nel midline height S(X)=[H,(X)+H_(X)]/2 as well as the
well-known term stemming from changes in the channel
width W(X)=H_(X)—-H_(X). The special case in which the
channel width W is constant is analyzed in some detail, as it
is relevant to diffusion within a narrow crack and the effec-
tive 1D equation of motion is especially simple. Finally, for
symmetric channels, the KP assumption is demonstrated to
be valid to order €.

The paper is organized as follows: The problem is stated
precisely and is then reformulated in dimensionless form in
Sec. II. In Sec. III, we carry out the asymptotic expansion in
the small parameter €. These results are used in Sec. IV to
reduce the full 2D problem to an effective 1D description,
yielding the Fick-Jacobs and generalized Zwanzig equations.
We also explore some of the consequences of the generalized
Zwanzig equation in Sec. IV. The KP assumption is shown to
be valid to second order in € in Sec. V. In Sec. VI, we give
our conclusions.

II. FORMULATION OF THE PROBLEM

Consider the diffusion of a large number of pointlike
identical noninteracting particles in a 2D channel that lies in
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the X—Z plane and that has hard walls at Z=H,(X) and Z
=H_(X). We assume that H,(X) and H_(X) are smooth
single-valued functions of X and that H,(X)>H_(X). The
number density of particles at the point (X,Z) at time T will
be denoted by ®(X,Z,T); stated more explicitly, the number
of particles in the region (X,X+dX) X (Z,Z+dZ) at time T is
®(X,Z,T)dXdZ. The equation of motion is the 2D diffusion
equation

Dr=D(Pyy+Dyy), (1)

where D is the diffusivity and subscripts denote partial de-
rivatives (and so, for example, ®;=dd/JT). Since the chan-
nel walls are impenetrable, the diffusive flux thorough the
walls must vanish, i.e.,

DX, H,(X),T) = H x(X)Dx(X,H,(X),T) ()
and
DX, H_(X),T) = H.x(X)Px(X,H_(X),T), (3)

for arbitrary X and 7.
Our goal is to develop an approximate equation of motion
for

H,(X)
GX,T) = J P(X,Z,T)dZ (4)

H_(X)

that is valid for narrow channels. [Note that G(X,T)dX is the
number of particles between X and X+dX at time T.] We will
sometimes find it more convenient to work with the number
density averaged over the channel width W(X,7)
=G(X,T)/ W(X) rather than with G.

We assume that

=) 5)
Ly
where the functions F, and F_ do not depend on a length
scale. Thus, Ly and L, are characteristic lengths in the X and
Z directions, respectively. In the case of a periodic channel,
Ly is simply the spatial period and L, is proportional to the
mean channel width.

We introduce the dimensionless variables x=X/Ly, z
=Z/L,, t=DT/Ly, h.=H./L, w=W/L,, s=S/L,, ¢
=LyL,®, and y=LyL,V. Setting e=(L,/Ly)?, we obtain

€p= . +epy, (6)
for h_(x) <z<h,(x) and arbitrary x,
). =€h, ¢, for z=h, (7)
and
b.=eh_ b, for z=h_. (8)

III. ASYMPTOTIC EXPANSION

We are interested in narrow channels, or, equivalently,
channels with slowly varying H, and H_. Accordingly, we
will suppose that €=(L,/Ly)? is small. For small ¢, the den-
sity ¢ may be expanded in powers of e we set
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b= € (x.2.0), 9)
n=0

where the ¢,’s are independent of e. We will seek solutions
in which t=eDT/L§ is of order unity, which means that T
must be large compared to the transverse diffusion time
L%/ D for these solutions to be valid. From a physical stand-
point, these solutions are a good approximation to the full 2D
dynamics when local equilibrium has nearly been reached.

We next insert the expansion (9) into Egs. (6)—(8) and
equate like powers of €. For n=0, this yields

¢nzz = (bn—l,r - ¢n—1,xx for ho=z= h+’ (10)
Ppz= h+x¢n—l,x for z=h,, (11)
and
¢nz = h—x¢n—l,x fOI' = h_, (1 2)
where ¢_;=0.

For n=0, Eq. (10) shows that ¢, is independent of z.
Equations (11) and (12) imply that in fact ¢,=0 for all x and
t. We conclude that ¢, depends only on x and ¢, and write

o= Op(x,1). (13)
For n=1, Eq. (10) gives
d)lzz: 001_ 00xx’ (14)

where Eq. (13) has been employed. Integrating this with re-
spect to z, we have

(;blz:(e()t_ 00xx)Z+fl’ (15)

where f; depends only on x and ¢t and h_=z=h,. The
boundary conditions (11) and (12) show that

By 0o = (8o = Oo )Py + f1 (16)
and
h—xg()x = (00t - GOxx)h— +f1 . (17)

Subtraction of the latter equation from the former yields
Wx00x=(001_ 00xx)w or

Wa()t = ax(wa()x) . (18)

As we shall see in the next section, Eq. (18) is the generali-
zation of the FJ equation to asymmetric channels.
Using Eq. (17) to eliminate f, from Eq. (15) and setting

by(x) = (hyh_y = h_h,)/w (19)
and
bs(x) =w/w, (20)

we obtain ¢.=(bs3z+b,) 0, Integrating with respect to z
once again, we have

L 5
d)l = 5b3Z + sz 00x+ 01, (21)
where 6, depends only on x and .

We now move on to the case n=2. For convenience, we
set

061142-2



DIFFUSION IN A TWO-DIMENSIONAL CHANNEL WITH ...

C; = bj&x|: éé’x(WGOx):| - U’)ch(bjgox) (22)

for j=2 and 3; note that ¢, and c3 depend only on x and ¢.
Using Eqgs. (18) and (21) in the n=2 version of Eq. (10), we
obtain

1
hre= 01— O+ Cr2 + £c3zz. (23)

Integration of Eq. (23) with respect to z yields

1 1
¢ = (0~ 0, )z + 50222 + 8‘3323 +f2s (24)
where f,=f,(x,1). We now insert Egs. (21) and (24) into Egs.
(11) and (12) with n=2 and take the difference of the result-
ing two equations. This gives
3

Walr - 0x(W01x) = 2 {ax[aj&x(ijOx)]
Jj=2

—aibj&x[l&x(wﬁox)]}, (25)
7. w

where

| B
a; = —(h,— ). (26)
: !

J:

For present purposes, we will not need to consider n val-
ues greater than 2. However, we can obtain corrections to the
FJ equation of any desired degree of accuracy by considering
larger values of n. Unfortunately, the calculations grow more
complex with each successive increase in n.

IV. REDUCTION TO AN EFFECTIVE ONE-DIMENSIONAL
DESCRIPTION

In this section, we will develop an approximate equation
of motion for G=G(X,T) that is valid for narrow channels
and sufficiently long times 7. As a preliminary observation,
note that Eq. (9) implies that

Y=2, €, (x.1), (27)
n=0
where
1 hy(x)
P, (x,0) = —— ¢, (x,7,0)dz. (28)
W(x) h_(x)

We will first derive a 1D equation of motion that is valid
to zeroth order in €. Using Eq. (13), we see that

o= 6. (29)
Equation (18) shows that
wik, = d (Wil (30)
To zeroth order in €, ¥=i and Eq. (30) may be written
wip = d(wip). (31)

In terms of the original, dimensional variables, Eq. (31) is
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W\I,T=Dl9x(w\lrx) (32)

oG a[ P (G)]
—=D—|W—| —|. (33)
o~ Tox| " ax\w

Equation (33) is the FJ equation [6]. It is valid to zeroth
order in €, and applies to both symmetric and asymmetric
channels. To zeroth order in €, ¢(x,z,7)=i(x,r), and so the
density of diffusing particles is independent of z to this order.
Thus, in this approximation, local equilibrium has been
reached.

We now turn to developing an equation of motion that is
valid to first order in €. Equation (21) gives

or

= 61+ (azby + asbs) O,/ w. (34)
Differentiating this with respect to time and using Egs. (18)
and (25), we find that
3

W‘//h‘ = (9x(w elx) + E (9x[aj&x(bj 00x)] . (35)
Jj=2

In this paragraph, we will work to first order in e. Utiliz-
ing Egs. (30) and (35), we have
3

wil, = d[w(6y, + €6,,)] + €, dla;o.(b;)].  (36)
j=2

On the other hand,
U=ty + ey = Oy + €60, + €(ab, + azby) Oy /w  (37)
and so
a(wip) = 9 [w(p, + €6,,)] + €dd{wd [(arb; + asby) g /w]}.
(38)
Subtraction of Eq. (38) from Eq. (36) yields

3
Wil = d(wik) = - €2, 07x|:Wﬁx<£l1>bjl//x:| . (39)
J=2 w

Equation (39) is the desired equation of motion. It takes
on a more illuminating form when /4, and A_ are eliminated
in favor of the dimensionless channel width w(x)=h,(x)
—h_(x) and the dimensionless channel midline height s(x)
=[h,(x)+h_(x)]/2. This gives

wzﬁ,—&x{w[l 6<Sx+12Wx zﬂx}. (40)

Equation (40) is phrased in terms of the dimensionless vari-
ables. In terms of the original, dimensional variables, it be-
comes

1
W\IszD&X[W<1 -5i- EW?()‘I’x] (41)
or

§=Di[w(1 —Si—ll—zwi)&ix(%)] (42)
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Equation (42) is valid to first order in €. For a symmetric
channel, S(X)=0 for all X and Eq. (42) reduces to the Zwan-
zig equation [7]. Thus, the Zwanzig equation has been rigor-
ously shown to be valid to first order in €. Equation (42)—
which generalizes the Zwanzig equation to asymmetric
channels—takes the form of the FJ equation with a spatially
varying diffusivity

D (X) = D(l — Sy - %Wi) : (43)
The effective diffusivity D.«(X) includes a term coming from
the variation of the channel width W with X, as well as a
contribution that stems from the X dependence of the channel
midline height S. As first noted by Zwanzig [7], a change in
the channel width produces a reduction in the effective dif-
fusivity D.x(X) whether the change is an increase or a de-
crease in W. A variation in the channel midline height S with
X also leads to a reduced D.(X). To gain a physical under-
standing of this, consider a channel with constant width. If
the midline height § varies with X, a diffusing particle must
travel a greater distance in moving from one X value to an-
other than it would if S were simply a constant. In the
equivalent 1D description, this is manifested in a reduced
D #(X) for the case in which S varies with X.

In general, it is not possible to solve the generalized
Zwanzig equation (42) analytically. The special case in
which the channel width W is a constant independent of po-
sition is especially simple, however, and the generalized
Zwanzig equation can be solved for arbitrary initial condi-
tions. This special case is also of physical interest because a
channel with a width that is very nearly constant can be
formed simply by making a crack in a solid. Suppose that
initially =f(x). If w is a constant, Eq. (40) reduces to

Y= a1 - ey, (44)
which takes the form of the 1D diffusion equation with spa-
tially varying diffusivity l—es)zc. Setting =i+ €t in Eq.
(44) and equating terms of the same order in €, we obtain

‘;bOt - lpOxx =0 (45)

and

Y1, — P == o (s2thy).- (46)

These equations must be solved subject to the initial condi-
tions ¢(x,0)=f(x) and #,(x,0)=0. Equation (45) is just the
homogeneous 1D diffusion equation and is of course exactly
solvable for arbitrary initial conditions. Explicitly, for t>0
we have

o(x,1) = f G(x—x",0)i(x",0)dx’, (47)
where
1 x2
G(x,1) = mexp(— E)H(t) (48)

is the Green’s function for the 1D diffusion equation and
H(r) is the Heaviside function. Equation (46) is the inhomo-
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geneous 1D diffusion equation with an inhomogeneous term
q=—0d,(s>,) that is known exactly by virtue of Eq. (47).
Applying the initial condition i,(x,0)=0, we obtain

(ﬂl(x,t)=J dt'j dx'G(x—x",t=t")g(x",t). (49)
0 -

Together, Egs. (47) and (49) give the solution to the initial
value problem =+ €y to first order in e.

The generalized Zwanzig equation has a number of inter-
esting applications, two of which we will consider here.
First, suppose a single particle is present in a periodic chan-
nel. For short times 7, the mean-square displacement of the
particle [X(7)-X(0)]? is 2DT. At long times, on the other
hand, the mean-square displacement tends to 2D*T, where
the constant D* will be referred to as the asymptotic diffu-
sivity. To find D*, we set W(X)=exp[-BV(X)] in the gener-
alized Zwanzig equation (42) and so obtain

Gr=dx[Deg(X)(Gx + BVxG)]. (50)

Equation (50) is formally identical to the Smoluchowski
equation for a particle with spatially varying diffusivity
D.(X) moving in 1D in the presence of the periodic external
potential V(X) if the ambient temperature is (kgB)~'. The
asymptotic diffusivity for this problem is given by

1 -
7 = (exp(BVIDGONexp(= BV)),  (51)
where the angular brackets denote an average over one spa-
tial period [18,19]. As a consequence, for a particle in a
periodic channel,

L1 {W(l 52 iwzﬂ_l w 52
D*_D —Ox T 12 X < > ( )

Equation (52) generalizes Zwanzig’s result for symmetric
channels [7] to asymmetric channels and shows that spatial
variations in the midline height result in a reduced
asymptotic diffusivity D*.

An approximate expression for the asymptotic diffusivity
has already been found for particular type of periodic 2D
channel with a curved midline—a so-called serpentine chan-
nel [3]. For a periodic serpentine channel, the height of the
midline § is a periodic function of X with period Ly. The
walls of the channel are by definition the loci of points situ-
ated at a fixed distance 6 from the midline. Let

Ly
I= f V1 +S3dX (53)
0

be the arclength of one period of the midline. Yariv ef al. [3]
showed that for small 6/ (i.e., for a narrow channel), the
asymptotic diffusivity of the channel is to leading order

L 2
D*=D<7X> . (54)

Let us apply our result [Eq. (52)] to a serpentine channel
and compare with Eq. (54). In terms of the dimensionless
variables, Eq. (52) is
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"

D ! dx !
Do ] wdx. (55)
0 w{l—e<s§+ 2>J 0
The dimensionless width of a serpentine channel is

26 1
w:—(1+—es)2(> (56)
L\ "2

to first order in e. Inserting this into Eq. (55), we find that to
order €

D 1 2 1 Ly 2
E = (f \’1 + GSidX) = <_ \11 + Sidx) . (57)
0

XJ0

Using Eq. (53), we recover Eq. (54), which shows that our
result agrees with that of Yariv et al. to first order in e.

Yariv et al. also found the lowest order correction to Eq.
(54), yielding an approximate expression for D* that is con-
siderably more accurate than ours [3]. The result of Yariv et
al., though, only applies to serpentine channels and so is
much less general than our result [Eq. (52)].

As a second application of the generalized Zwanzig equa-
tion, consider a narrow channel of length Ly that joins reser-
voirs of fixed number density in the regions X=0 and X
=Ly. Equation (42) shows that the current of particles
through the channel is

1
J=—DW<1—S§—EW§>‘I’X. (58)

Let us suppose that the steady state has been reached, so that
J is independent of X. Solving Eq. (58) for Wy and integrat-
ing over X, we find that

AW =—RJ, (59)
where AV =WY(Ly)-V¥(0) and

Lx
R= l f ax (60)

D 0 2 1 2)
wl1-83-—w
( X 12 X

is the resistance of the channel to the flow of particles
through it. Equation (60) is valid to first order in €. If only
terms of zeroth order in € are retained, Eq. (60) is replaced
by

1 (= ax
R=—| —. 61)

Comparing Egs. (60) and (61), we see that the corrections
coming from spatial variations of the midline height and
channel width both increase the channel resistance R.

As we have already noted, to zeroth order in €, the density
¢(x,z,1) is independent of z and ¢(x,z,1)=ix,r). Let us
find the first order correction to the density for small but
nonzero €. Using Egs. (13), (21), and (29), we find that to
first order in e,
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1
¢ = ¢0 + €¢1 = 60 + 661 + E(bzz + §b3Z2> lﬂx. (62)

We next employ Eq. (37) to eliminate 6,+ €6, from Eq. (62)
and then replace h, and h_ by s+w/2 and s—w/2, respec-
tively. This yields

¢’=¢+€(WSX—WXS)(z—s)+%Wx<zz—sz ! 2)]%

-—w
12 w
(63)

Equation (63) gives the first order deviation of the density
from local equilibrium. Once Eq. (40) has been solved for a
given channel geometry and initial distribution ¢(x,0), this
result yields the density throughout the channel.

For a symmetric channel, s=0 and Eq. (63) reduces to

1 1 w
2 2| W
=+ -—w | =, 64
$=1 2e(z uw)wwx (64)
which shows that to first order in €, the density ¢ varies
quadratically with z. For a channel of constant width w, on
the other hand,

(;b: l;b+ ESX(Z - S) lr//,\:’ (65)

and so ¢ is a linear function of the vertical displacement
from the centerline z—s to first order in e.

V. VALIDITY OF THE KALINAY AND PERCUS
ASSUMPTION FOR SYMMETRIC CHANNELS

In their reduction of two-dimensional diffusion in a nar-
row symmetric channel to an effective one-dimensional de-
scription, Kalinay and Percus [9] make the assumption that
there is a linear operator £ that acts on #(x,t) to give
P(x,z,1), ie.,

P(x,z,1) = Lip(x,1). (66)
Further, KP assume that
L=1+L(x,z,0,,€)0, (67)

and that the linear operator L may be expanded in powers of
e: specifically, they write

[

L(X,Z, &x’ 6) = 2 EnLn(va’ ax) P (68)

n=1

where the operators L, are taken to be independent of €. We
will refer to Egs. (66)—(68) as the KP assumption. If true, this
assumption would mean that knowledge of the density aver-
aged over the channel width ¢(x,z) is all that is needed to
determine the density ¢(x,z,t) throughout the channel.

The validity of the KP assumption is far from self evident.
In this section, we will show rigorously that the KP assump-
tion is valid to second order in €. To do so, we must establish
that

b=, (69)

and that there are linear operators L;=L,(x,z,d,) and L,
=L,(x,z,d,) that satisfy the relations
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b1 =t + Lyhy, (70)

and

b=t + Ly + Loy, (71)

Thus, we will need ¢; and ¢; for a symmetric channel for i
=0,1,2.

¢, and i, are given by Egs. (13) and (29), respectively.
For a symmetric channel, ¢ is an even function of z and
hence ¢, is an odd function of z. Equation (21) therefore
reduces to

b1=06+ b3 00,2 (72)

and Eq. (24) simplifies to become

1
¢21 = (alt - elxx)z + 66313- (73)
Integrating the latter with respect to z, we find that
1 1
¢y = 5(911 0107 + ﬂcsz + 65, (74)

where 6,=6,(x,1). Furthermore, setting h=w/2 for conve-
nience and using Egs. (28), (72), and (74), we find that

=06+ 6b3 Oo.° (75)
and

1
Glm)h + _C3h4 (76)

1
=6,+—-(60
1) 2+6( 1= 120

Equation (69) follows immediately from Egs. (13) and
(29). Inserting Egs. (72) and (75) into Eq. (70), we see that
Eq. (70) is satisfied if we set

h 1
Li=—"|z- —h2> 77
=5 (Z 3 (77)

L,=L,(x,z) is a linear operator, as required by the KP as-
sumption. In addition, note that our expression for L; is in
agreement with Eq. (64).

We now insert Egs. (74)—(77) into Eq. (71), employ Egq.
(25) and recall the definitions of the aj’s, bj’s, and c;’s. This

yields
He-t)frefos(a,)
f[ (hoox}—%ji(hhxaox)}
24<4—§h4>{';g{——< ]
-}

We conclude that Eq. (71) is satisfied if we put

L6, =
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1 1 n
Ly=— 2——h2> hh,. ——=
2 12<Z 3 |: XXX l’l

1 ([, 1, N
+ =\t = -h* || 4y = 3=F — hhy,
24h 5 h

+ (302 - 2hhm)&x} ) (79)

- thhxx + (Zhhxx - h)zc) &x

Since L, is a linear operator that depends only on x, z, and 4,,
we have verified that the KP assumption is valid to order €,
as we set out to do. Our expressions for L; and L, also agree
with the findings of KP [9], and so provide additional cor-
roboration for their work.

VI. CONCLUSIONS

In this paper, diffusion in a narrow two-dimensional chan-
nel with a curved midline and varying width was reduced to
an effective one-dimensional equation of motion which we
dubbed the generalized Zwanzig equation. This equation
takes the form of the Fick-Jacobs equation with a spatially
varying effective diffusivity. The effective diffusivity in-
cludes a contribution that comes from the slope of the chan-
nel midline dS/dX as well as the standard term stemming
from variations in the channel width.

Our derivation of the generalized Zwanzig equation was
completely rigorous and was based on an asymptotic expan-
sion in the small dimensionless parameter e that character-
izes the channel width. For a channel that has a straight
midline or wall, our equation of motion reduces to Zwanzig’s
equation [7]. Our derivation therefore provides a rigorous
proof of the validity of the latter equation.

Using the generalized Zwanzig equation, we found the
long time or asymptotic diffusivity for a narrow periodic
channel, generalizing Zwanzig’s result for symmetric chan-
nels to asymmetric channels. We also determined the resis-
tance of a narrow channel to the passage of diffusing par-
ticles. For the special case of a channel with a curved midline
and constant width W, we obtained a solution to the gener-
alized Zwanzig equation for arbitrary initial conditions that
is correct to order e.

In their reduction of diffusion in a symmetric channel to
an effective 1D description, Kalinay and Percus assumed that
knowledge of the density averaged over the channel width
W(X,T) is all that is needed to determine the density
®(X,Z,T) throughout the channel [9]. In this paper, we dem-
onstrated that their assumption is valid to second order in €.
Thus, we have proven the validity of the key assumption that
Kalinay and Percus make in deriving the Zwanzig equation
and the lowest order correction to this equation.

Diffusion in a narrow three-dimensional tube with a
straight axis and varying radius can also be reduced to an
effective one-dimensional description [7]. This reduction
may be put on a firm footing using precisely the same meth-
ods as we employed in this paper. We find that the Fick-
Jacobs equation for a three-dimensional tube is valid to ze-
roth order in € and that the Zwanzig equation is correct to
first order in €, in complete analogy with our results for
symmetric 2D channels [20].
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